Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation

Autor: Lanfranco Leo, Scott T. Brady, Minsu Kang, Carina Weissmann, Matthew R. Burns, Liang Qiang, Gerardo Morfini, Peter W. Baas, Yuyu Song
Rok vydání: 2017
Předmět:
0301 basic medicine
Spastin
Mutant
MOTORES MOLECULARES
medicine.disease_cause
Axonal Transport
Microtubules
purl.org/becyt/ford/1 [https]
0302 clinical medicine
Protein Isoforms
Casein Kinase II
Cells
Cultured

Genetics (clinical)
Adenosine Triphosphatases
Motor Neurons
Mutation
Decapodiformes
Articles
General Medicine
Protein Transport
Biochemistry
Casein kinase 2
CIENCIAS NATURALES Y EXACTAS
Intracellular
Gene isoform
Hereditary spastic paraplegia
CK2
Otras Ciencias Biológicas
TRANSPORTE AXONAL
Biology
Ciencias Biológicas
03 medical and health sciences
Microtubule
Genetics
medicine
Animals
Humans
purl.org/becyt/ford/1.6 [https]
Molecular Biology
Spastic Paraplegia
Hereditary

Fibroblasts
medicine.disease
ESPASTINA
Rats
Disease Models
Animal

030104 developmental biology
Mutant Proteins
030217 neurology & neurosurgery
Zdroj: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
ISSN: 1460-2083
0964-6906
DOI: 10.1093/hmg/ddx125
Popis: Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects. Fil: Leo, Lanfranco. Drexel University College of Medicine; Estados Unidos Fil: Weissmann, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Chicago; Estados Unidos Fil: Burns, Matthew. University of Chicago; Estados Unidos Fil: Kang, Minsu. University of Chicago; Estados Unidos. Marine Biological Laboratory; Estados Unidos Fil: Song, Yuyu. Marine Biological Laboratory; Estados Unidos. Yale University; Estados Unidos Fil: Qiang, Liang. Drexel University College of Medicine; Estados Unidos Fil: Brady, Scott T.. University of Chicago; Estados Unidos. Marine Biological Laboratory; Estados Unidos Fil: Baas, Peter W.. Drexel University College of Medicine; Estados Unidos Fil: Morfini, Gerardo. University of Chicago; Estados Unidos. Marine Biological Laboratory; Estados Unidos
Databáze: OpenAIRE