Exciton-Peierls mechanism and universal many-body gaps in carbon nanotubes
Autor: | Jacopo Baima, Maria Hellgren, Anissa Acheche |
---|---|
Přispěvatelé: | Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2018 |
Předmět: |
Phonon
Exciton FOS: Physical sciences 02 engineering and technology Carbon nanotube 01 natural sciences law.invention Condensed Matter - Strongly Correlated Electrons Condensed Matter::Materials Science law Lattice (order) 0103 physical sciences Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 010306 general physics Physics Condensed Matter - Mesoscale and Nanoscale Physics Condensed matter physics Strongly Correlated Electrons (cond-mat.str-el) Graphene 021001 nanoscience & nanotechnology Zigzag [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Quasiparticle Density functional theory Condensed Matter::Strongly Correlated Electrons [PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] 0210 nano-technology |
Zdroj: | Physical Review B: Condensed Matter and Materials Physics (1998-2015) Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2018, 98 (20), pp.201103. ⟨10.1103/PhysRevB.98.201103⟩ Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2018, 98 (20), pp.201103. ⟨10.1103/PhysRevB.98.201103⟩ |
ISSN: | 1098-0121 1550-235X |
DOI: | 10.48550/arxiv.1807.05589 |
Popis: | "Metallic" carbon nanotubes exhibit quasiparticle gaps when isolated from a screening environment. The gap-opening mechanism is expected to be of electronic origin, but the precise nature is debated. In this work, we show that hybrid density functional theory predicts a set of excitonic instabilities capable of opening gaps of the size found in experiment. The excitonic instabilities are coupled to vibrational modes and, in particular, the modes associated with the ${\bf \Gamma}-E_{2g}$ and ${\bf K}-A'_1$ Kohn anomalies of graphene, inducing Peierls lattice distortions with a strong electron-phonon coupling. In the larger tubes, the longitudinal optical phonon mode becomes a purely electronic dimerization that is fully symmetry conserving in the zigzag and chiral tubes, but breaks the symmetry in the armchair tubes. The resulting gaps are universal (i.e., independent of chirality) and scale as 1/R with tube radius. Comment: 5 pages, 4 figures + Supplemental material |
Databáze: | OpenAIRE |
Externí odkaz: |