Boundary control of partial differential equations using frequency domain optimization techniques
Autor: | Pierre Apkarian, Dominikus Noll |
---|---|
Přispěvatelé: | ONERA / DTIS, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
General Computer Science BOUNDARY CONTROL OF PDEs Structure (category theory) MathematicsofComputing_NUMERICALANALYSIS Boundary (topology) 02 engineering and technology FREQUENCY STRUCTURED Hinfini [SPI]Engineering Sciences [physics] 020901 industrial engineering & automation Simple (abstract algebra) ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION FOS: Mathematics 0202 electrical engineering electronic engineering information engineering Applied mathematics [INFO]Computer Science [cs] Electrical and Electronic Engineering [MATH]Mathematics [math] Mathematics - Optimization and Control Mathematics [PHYS]Physics [physics] Partial differential equation CONTROLE FRONTIÈRE FREQUENCY-DOMAIN DESIGN Mechanical Engineering 020208 electrical & electronic engineering Wave equation Optimization and Control (math.OC) Control and Systems Engineering INFINITE Frequency domain WAVE EQUATION WAVE Convection–diffusion equation INFINITE-DIMENSIONAL SYSTEMS Hyperbolic partial differential equation CONVECTION-DIFFUSION |
Zdroj: | Systems & Control Letters Systems & Control Letters, 2020, 135 (104577), pp.1-12. ⟨10.1016/j.sysconle.2019.104577⟩ |
ISSN: | 0167-6911 |
DOI: | 10.1016/j.sysconle.2019.104577⟩ |
Popis: | International audience; We present a frequency domain based H ∞-control strategy to solve boundary control problems for systems governed by parabolic or hyperbolic partial differential equation, where controllers are constrained to be physically implementable and of simple structure suited for practical applications. The efficiency of our technique is demonstrated by controlling a reaction-diffusion equation with input delay, and a wave equation with boundary anti-damping. |
Databáze: | OpenAIRE |
Externí odkaz: |