Boundary control of partial differential equations using frequency domain optimization techniques

Autor: Pierre Apkarian, Dominikus Noll
Přispěvatelé: ONERA / DTIS, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0209 industrial biotechnology
General Computer Science
BOUNDARY CONTROL OF PDEs
Structure (category theory)
MathematicsofComputing_NUMERICALANALYSIS
Boundary (topology)
02 engineering and technology
FREQUENCY
STRUCTURED Hinfini
[SPI]Engineering Sciences [physics]
020901 industrial engineering & automation
Simple (abstract algebra)
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
0202 electrical engineering
electronic engineering
information engineering

Applied mathematics
[INFO]Computer Science [cs]
Electrical and Electronic Engineering
[MATH]Mathematics [math]
Mathematics - Optimization and Control
Mathematics
[PHYS]Physics [physics]
Partial differential equation
CONTROLE FRONTIÈRE
FREQUENCY-DOMAIN DESIGN
Mechanical Engineering
020208 electrical & electronic engineering
Wave equation
Optimization and Control (math.OC)
Control and Systems Engineering
INFINITE
Frequency domain
WAVE EQUATION
WAVE
Convection–diffusion equation
INFINITE-DIMENSIONAL SYSTEMS
Hyperbolic partial differential equation
CONVECTION-DIFFUSION
Zdroj: Systems & Control Letters
Systems & Control Letters, 2020, 135 (104577), pp.1-12. ⟨10.1016/j.sysconle.2019.104577⟩
ISSN: 0167-6911
DOI: 10.1016/j.sysconle.2019.104577⟩
Popis: International audience; We present a frequency domain based H ∞-control strategy to solve boundary control problems for systems governed by parabolic or hyperbolic partial differential equation, where controllers are constrained to be physically implementable and of simple structure suited for practical applications. The efficiency of our technique is demonstrated by controlling a reaction-diffusion equation with input delay, and a wave equation with boundary anti-damping.
Databáze: OpenAIRE