Magnetically Induced Polarization in Centrosymmetric Bonds
Autor: | Ryota Ono, S. V. Nikolaev, Igor Solovyev |
---|---|
Rok vydání: | 2021 |
Předmět: |
POLARIZATION
Bond vector MAGNETIC ORDERS FOS: Physical sciences General Physics and Astronomy Spin current Induced polarization TRANSFER INTEGRAL Condensed Matter - Strongly Correlated Electrons Mathematics::Probability KRAMERS DOUBLET Mesoscale and Nanoscale Physics (cond-mat.mes-hall) COPPER OXIDES DENSITY FUNCTIONAL THEORY POSITION OPERATORS Physics Condensed Matter - Materials Science Condensed Matter - Mesoscale and Nanoscale Physics Strongly Correlated Electrons (cond-mat.str-el) MOTT INSULATORS INDEPENDENT CONTRIBUTIONS Magnetic order High Energy Physics::Phenomenology Materials Science (cond-mat.mtrl-sci) INDUCED POLARIZATION Coupling (probability) Crystallography ELECTRIC POLARIZATION BAND STRUCTURE Condensed Matter::Strongly Correlated Electrons CENTROSYMMETRIC NONCOLLINEAR |
Zdroj: | Phys Rev Lett Physical Review Letters |
ISSN: | 1079-7114 0031-9007 |
Popis: | We reveal the microscopic origin of electric polarization $\vec{P}$ induced by noncollinear magnetic order. We show that in Mott insulators, such $\vec{P}$ is given by all possible combinations of position operators $\hat{\vec{r}}_{ij} = (\vec{r}_{ij}^{\, 0},\vec{\boldsymbol{r}}_{ij}^{\phantom{0}})$ and transfer integrals $\hat{t}_{ij} = (t_{ij}^{0},\boldsymbol{t}_{ij}^{\phantom{0}})$ in the bonds, where $\vec{r}_{ij}^{\, 0}$ and $t_{ij}^{0}$ are spin-independent contributions in the basis of Kramers doublet states, while $\vec{\boldsymbol{r}}_{ij}^{\phantom{0}}$ and $\boldsymbol{t}_{ij}^{\phantom{0}}$ stem solely from the spin-orbit interaction. Among them, the combination $t_{ij}^{0} \vec{\boldsymbol{r}}_{ij}^{\phantom{0}}$, which couples to the spin current, remains finite in the centrosymmetric bonds, thus yielding finite $\vec{P}$ in the case of noncollinear arrangement of spins. The form of the magnetoelectric coupling, which is controlled by $\vec{\boldsymbol{r}}_{ij}^{\phantom{0}}$, appears to be rich and is not limited to the phenomenological law $\vec{P} \sim \boldsymbol{\epsilon}_{ij} \times [\boldsymbol{e}_{i} \times \boldsymbol{e}_{j}]$ with $\boldsymbol{\epsilon}_{ij}$ being the bond vector connecting the spins $\boldsymbol{e}_{i}$ and $\boldsymbol{e}_{j}$. Using density-functional theory, we illustrate how the proposed mechanism work in the spiral magnets CuCl$_2$, CuBr$_2$, CuO, and $\alpha$-Li$_2$IrO$_3$, providing consistent explanation to available experimental data. Comment: 6 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |