A virtually ample field that is not ample
Autor: | Padmavathi Srinivasan |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Mathematics - Number Theory General Mathematics Field (mathematics) Extension (predicate logic) Mathematics - Algebraic Geometry Computer Science::Emerging Technologies Mathematics::Algebraic Geometry FOS: Mathematics Number Theory (math.NT) Algebra over a field Algebraic Geometry (math.AG) 14G05 12E30 Mathematics |
Zdroj: | Israel Journal of Mathematics. 234:769-776 |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-019-1934-y |
Popis: | A field $K$ is called ample if for every geometrically integral $K$-variety $V$ with a smooth $K$-point, $V(K)$ is Zariski-dense in $V$. A field $K$ is virtually ample if some finite extension of $K$ is ample. We prove that there exists a virtually ample field that is not ample. |
Databáze: | OpenAIRE |
Externí odkaz: |