Steklov Eigenvalues of Nearly Spherical Domains

Autor: Robert Viator, Braxton Osting
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2104.03380
Popis: We consider Steklov eigenvalues of three-dimensional, nearly-spherical domains. In previous work, we have shown that the Steklov eigenvalues are analytic functions of the domain perturbation parameter. Here, we compute the first-order term of the asymptotic expansion, which can explicitly be written in terms of the Wigner 3-jsymbols. We analyze the asymptotic expansion and prove the isoperimetric result that, if l is a square integer, the volume-normalized l-th Steklov eigenvalue is stationary for a ball.
Databáze: OpenAIRE