Edge distance-regular graphs

Autor: Marc Cámara, Cristina Dalfó, E. Garriga, J. Fíbrega, Miguel Angel Fiol
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Repositorio Abierto de la UdL
Universitad de Lleida
Popis: Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root. In this paper we study this concept, give some of its properties, such as the regularity of Γ, and derive some characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the (standard) incidence matrix. Also, the analogue of the spectral excess theorem for distance-regular graphs is proved, so giving a quasi-spectral characterization of edge-distance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph. Supported by the Ministry of Science and Innovation of Spain under project MTM2008- 06620-C03-01 and by the Catalan Research Council under project 2009SGR01387
Databáze: OpenAIRE