Pointwise convergence of some multiple ergodic averages

Autor: Sebastián Donoso, Wenbo Sun
Rok vydání: 2018
Předmět:
Zdroj: Advances in Mathematics. 330:946-996
ISSN: 0001-8708
DOI: 10.1016/j.aim.2018.03.022
Popis: We show that for every ergodic system ( X , μ , T 1 , … , T d ) with commuting transformations, the average 1 N d + 1 ∑ 0 ≤ n 1 , … , n d ≤ N − 1 ∑ 0 ≤ n ≤ N − 1 f 1 ( T 1 n ∏ j = 1 d T j n j x ) f 2 ( T 2 n ∏ j = 1 d T j n j x ) ⋯ f d ( T d n ∏ j = 1 d T j n j x ) converges for μ-a.e. x ∈ X as N → ∞ . If X is distal, we prove that the average 1 N ∑ n = 0 N − 1 f 1 ( T 1 n x ) f 2 ( T 2 n x ) ⋯ f d ( T d n x ) converges for μ-a.e. x ∈ X as N → ∞ . We also establish the pointwise convergence of averages along cubical configurations arising from a system with commuting transformations. Our methods combine the existence of sated and magic extensions introduced by Austin and Host respectively with ideas on topological models by Huang, Shao and Ye.
Databáze: OpenAIRE