Atomically Resolved Chemical Reactivity of Small Fe Clusters
Autor: | Franz J. Giessibl, Sergiy Mankovsky, S. Polesya, Hubert Ebert, Julian Berwanger |
---|---|
Rok vydání: | 2019 |
Předmět: |
inorganic chemicals
Condensed Matter::Quantum Gases Materials science Coordination number ddc:530 General Physics and Astronomy 530 Physik 01 natural sciences Atomic units Spectral line Catalysis Scanning probe microscopy Chemical physics 0103 physical sciences Atom Cluster (physics) Physics::Atomic and Molecular Clusters Chemical binding Physics::Atomic Physics 010306 general physics |
Zdroj: | Physical review letters. 124(9) |
ISSN: | 1079-7114 |
Popis: | Small metal clusters have been investigated for decades due to their beneficial catalytic activity. It was found that edges are most reactive and the number of catalytic events increases with the cluster's size. However, a direct measurement of chemical reactivity of individual atoms within the clusters has not been reported yet. We combine the high-resolution capability of CO-terminated tips in scanning probe microscopy with their ability to probe chemical binding forces on single Fe atoms to study the chemical reactivity of atom-by-atom assembled Fe clusters from 1 to 15 atoms on the atomic scale. We find that the chemical reactivity of individual atoms within flat Fe clusters does not depend on the cluster size but on the coordination number of the investigated atom. Furthermore, we explain the atomic contrast of the investigated Fe clusters by relating the force spectra of individual atoms with atomic force microscopy images of the clusters. |
Databáze: | OpenAIRE |
Externí odkaz: |