Bayesian calibration of a methane-air global scheme and uncertainty propagation to flame-vortex interactions

Autor: Olivier Le Maitre, Jan Mateu Armengol, Ronan Vicquelin
Přispěvatelé: Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Uncertainty Quantification in Scientific Computing and Engineering (PLATON), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Barcelona Supercomputing Center
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Flame-vortex Interactions
Computational chemistry
Computational fluid dynamics
020209 energy
General Chemical Engineering
Bayesian inference
Montecarlo
Mètode de

General Physics and Astronomy
Energy Engineering and Power Technology
02 engineering and technology
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
Physics::Fluid Dynamics
Laminar Premixed Flame
symbols.namesake
020401 chemical engineering
Laminar premixed flame
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Methane-air global scheme
0202 electrical engineering
electronic engineering
information engineering

Calibration
Physics::Chemical Physics
0204 chemical engineering
Uncertainty quantification
Methane-air Global Scheme
Uncertainty Propagation
Propagation of uncertainty
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Polynomial chaos
business.industry
[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment
Markov chain Monte Carlo
Bayesian Inference
General Chemistry
Mechanics
Flame speed
Monte Carlo method
Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria [Àrees temàtiques de la UPC]
Fuel Technology
13. Climate action
Flame-vortex interactions
Uncertainty propagation
symbols
Uncertainty Quantification
business
Zdroj: Combustion and Flame
Combustion and Flame, Elsevier, 2021, 234, pp.111642. ⟨10.1016/J.COMBUSTFLAME.2021.111642⟩
Combustion and Flame, 2021, 234, pp.111642. ⟨10.1016/J.COMBUSTFLAME.2021.111642⟩
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 0010-2180
Popis: Simplified chemistry models are commonly used in reactive computational fluid dynamics (CFD) simulations to alleviate the computational cost. Uncertainties associated with the calibration of such simplified models have been characterized in some works, but to our knowledge, there is a lack of studies analyzing the subsequent propagation through CFD simulation of combustion processes. This work propagates the uncertainties - arising in the calibration of a global chemistry model - through direct numerical simulations (DNS) of flame-vortex interactions. Calibration uncertainties are derived by inferring the parameters of a two-step reaction mechanism for methane, using synthetic observations of one-dimensional laminar premixed flames based on a detailed mechanism. To assist the inference, independent surrogate models for estimating flame speed and thermal thickness are built taking advantage of the Principal Component Analysis (PCA) and the Polynomial Chaos (PC) expansion. Using the Markov Chain Monte Carlo (MCMC) sampling method, a discussion on how push-forward posterior densities behave with respect to the detailed mechanism is provided based on three different calibrations relying (i) only on flame speed, (ii) only on thermal thickness, and (iii) on both quantities simultaneously. The model parameter uncertainties characterized in the latter calibration are propagated to two-dimensional flame-vortex interactions using 60 independent samples. Posterior predictive densities for the time evolution of the heat release and flame surface are consistent, being that the confidence intervals contain the reference simulation. However, the two-step mechanism fails to reproduce the flame response to stretch as it was not considered in the calibration. This study highlights the capabilities and limitations of propagating chemistry-models uncertainties to CFD applications to fully quantify posterior uncertainties on target quantities. The authors wish to thank V. Moureau for his help on setting up the YALES2 case. This work has bene ted from the financial support of the LabEx LaSIPS (ANR-10-LABX-0032-LaSIPS) managed by the French National Research Agency under the "Investissements d'avenir" program (ANR-11-IDEX-0003). The study was performed using HPC resources from the Mesocentre computing center of CentraleSupelec and Ecole Normale Superieure Paris-Saclay supported by CNRS and Region Ile-de-France (http://mesocentre.centralesupelec.fr/).
Databáze: OpenAIRE