Noncommutative spaces and matrix embeddings on flat ℝ 2 n + 1
Autor: | Joanna L. Karczmarek, Ken Huai-Che Yeh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics Pure mathematics Euclidean space Operator (physics) FOS: Physical sciences Mathematical Physics (math-ph) 16. Peace & justice Space (mathematics) Noncommutative geometry Hermitian matrix Hypersurface High Energy Physics - Theory (hep-th) Mathematics::K-Theory and Homology Embedding Mathematical Physics Eigenvalues and eigenvectors |
Zdroj: | Journal of High Energy Physics |
Popis: | We conjecture an embedding operator which assigns, to any 2n+1 hermitian matrices, a 2n-dimensional hypersurface in flat (2n + 1)-dimensional Euclidean space. This corresponds to precisely defining a fuzzy D(2n)-brane corresponding to N D0-branes. Points on the emergent hypersurface correspond to zero eigenstates of the embedding operator, which have an interpretation as coherent states underlying the emergent noncommutative geometry. Using this correspondence, all physical properties of the emergent D(2n)-brane can be computed. We apply our conjecture to noncommutative flat and spherical spaces. As a by-product, we obtain a construction of a rotationally symmetric flat noncommutative space in 4 dimensions. Comment: 14 pages, no figures. v2: added references and a clarification |
Databáze: | OpenAIRE |
Externí odkaz: |