Noncommutative spaces and matrix embeddings on flat ℝ 2 n + 1

Autor: Joanna L. Karczmarek, Ken Huai-Che Yeh
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Journal of High Energy Physics
Popis: We conjecture an embedding operator which assigns, to any 2n+1 hermitian matrices, a 2n-dimensional hypersurface in flat (2n + 1)-dimensional Euclidean space. This corresponds to precisely defining a fuzzy D(2n)-brane corresponding to N D0-branes. Points on the emergent hypersurface correspond to zero eigenstates of the embedding operator, which have an interpretation as coherent states underlying the emergent noncommutative geometry. Using this correspondence, all physical properties of the emergent D(2n)-brane can be computed. We apply our conjecture to noncommutative flat and spherical spaces. As a by-product, we obtain a construction of a rotationally symmetric flat noncommutative space in 4 dimensions.
Comment: 14 pages, no figures. v2: added references and a clarification
Databáze: OpenAIRE