enPresenting Convex Sets of Probability Distributions by Convex Semilattices and Unique Bases ((Co)algebraic pearls)
Autor: | Bonchi, Filippo, Sokolova, Ana, Vignudelli, Valeria |
---|---|
Přispěvatelé: | Gadducci, Fabio, Silva, Alexandra |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
DOI: | 10.4230/lipics.calco.2021.11 |
Popis: | We prove that every finitely generated convex set of finitely supported probability distributions has a unique base. We apply this result to provide an alternative proof of a recent result: the algebraic theory of convex semilattices presents the monad of convex sets of probability distributions. LIPIcs, Vol. 211, 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021), pages 11:1-11:18 |
Databáze: | OpenAIRE |
Externí odkaz: |