The Stochastic Team Orienteering Problem with Position-Dependent Rewards
Autor: | Eva Barrena, Javier Panadero, Angel A. Juan, David Canca |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Organización Industrial y Gestión de Empresas I, Universidad de Sevilla. TEP216: Tecnologías de la Información e Ingeniería de Organización, Ministerio de Ciencia e Innovación (MICIN). España, Universidad de Sevilla, Junta de Andalucía, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Universitat Politècnica de Catalunya. Departament d'Organització d'Empreses |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Mathematical models
Biased-randomized algorithms team orienteering problem mathematical modeling biased-randomized algorithms simheuristics Simheuristics General Mathematics Computer Science (miscellaneous) Matemàtiques i estadística [Àrees temàtiques de la UPC] Models matemàtics Team orienteering problem Mathematical modeling Engineering (miscellaneous) |
Zdroj: | Mathematics; Volume 10; Issue 16; Pages: 2856 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math10162856 |
Popis: | In this paper, we analyze both the deterministic and stochastic versions of a team orienteering problem (TOP) in which rewards from customers are dynamic. The typical goal of the TOP is to select a set of customers to visit in order to maximize the total reward gathered by a fixed fleet of vehicles. To better reflect some real-life scenarios, we consider a version in which rewards associated with each customer might depend upon the order in which the customer is visited within a route, bonusing the first clients and penalizing the last ones. In addition, travel times are modeled as random variables. Two mixed-integer programming models are proposed for the deterministic version, which is then solved using a well-known commercial solver. Furthermore, a biased-randomized iterated local search algorithm is employed to solve this deterministic version. Overall, the proposed metaheuristic algorithm shows an outstanding performance when compared with the optimal or near-optimal solutions provided by the commercial solver, both in terms of solution quality as well as in computational times. Then, the metaheuristic algorithm is extended into a full simheuristic in order to solve the stochastic version of the problem. A series of numerical experiments allows us to show that the solutions provided by the simheuristic outperform the near-optimal solutions obtained for the deterministic version of the problem when the latter are used in a scenario under conditions of uncertainty. In addition, the solutions provided by our simheuristic algorithm for the stochastic version of the problem offer a higher reliability level than the ones obtained with the commercial solver. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |