Strong barrelledness properties in Lebesgue-Bochner spaces
Autor: | Jesús Ferrer, M. López Pellicer, Juan Carlos Ferrando |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1994 |
Předmět: |
Pure mathematics
Bochner integrable function space General Mathematics Mathematical analysis atomless measure barrelled space Bochner space Quotient space (linear algebra) Measurable vector-valued function space Strictly convex space 46E40 Locally compact space 46A08 Lp space Reflexive space Barrelled space Mathematics Normed vector space |
Zdroj: | Bull. Belg. Math. Soc. Simon Stevin 1, no. 1 (1994), 73-78 |
Popis: | If (›; §;„) is a flnite atomless measure space and X is a normed space, we prove that the space Lp(„;X), 1• p•1is a barrelled space of class@0, regardless of the barrelledness of X: That enables us to obtain a localization theorem of certain mappings deflned in Lp(„;X): By \space" we mean a \real or complex Hausdorfi locally convex space". Given a dual pair (E;F), as usual ae(E;F) denotes the weak topology on E: If B is a subset of a linear space E,hBi will denote its linear hull. |
Databáze: | OpenAIRE |
Externí odkaz: |