Strong barrelledness properties in Lebesgue-Bochner spaces

Autor: Jesús Ferrer, M. López Pellicer, Juan Carlos Ferrando
Jazyk: angličtina
Rok vydání: 1994
Předmět:
Zdroj: Bull. Belg. Math. Soc. Simon Stevin 1, no. 1 (1994), 73-78
Popis: If (›; §;„) is a flnite atomless measure space and X is a normed space, we prove that the space Lp(„;X), 1• p•1is a barrelled space of class@0, regardless of the barrelledness of X: That enables us to obtain a localization theorem of certain mappings deflned in Lp(„;X): By \space" we mean a \real or complex Hausdorfi locally convex space". Given a dual pair (E;F), as usual ae(E;F) denotes the weak topology on E: If B is a subset of a linear space E,hBi will denote its linear hull.
Databáze: OpenAIRE