A high order MOOD method for compressible Navier-Stokes equations: application to hypersonic viscous flows

Autor: Rodolphe Turpault, Thanh Ha Nguyen Bui
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Progress in Computational Fluid Dynamics
Progress in Computational Fluid Dynamics, Inderscience, 2019, 19 (6), pp.337. ⟨10.1504/PCFD.2019.103257⟩
ISSN: 1468-4349
1741-5233
DOI: 10.1504/PCFD.2019.103257⟩
Popis: A very high-order finite volumes numerical method is designed for the simulation of compressible Navier-Stokes equations on 2D unstructured meshes. This scheme is based on the MOOD methods described for Euler's equations, it is an interesting alternative in the design of a scheme adapted to accurate simulations of flows with discontinuities, in all the domain. The main originality of our method is to include the viscosity/diffusion terms of Navier-Stokes equations. These terms may be discretised with the same accuracy of convection terms, though we will restrict ourselves to second-order here. It permits to treat the hypersonic viscous interactions with high accuracy. Numerical experiments are conducted to demonstrate the performance of the proposed method.
Databáze: OpenAIRE