Quasirenormalizable Quantum Field Theories
Autor: | Maksim Vladimirovich Polyakov, Aleksei Alekseevich Vladimirov, Kirill Mikhailovich Semenov-Tian-Shansky, A. O. Smirnov |
---|---|
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Physics Field (physics) Unitarity High Energy Physics::Phenomenology Crossing FOS: Physical sciences Statistical and Nonlinear Physics Renormalization group 01 natural sciences High Energy Physics - Phenomenology Theoretical physics High Energy Physics - Phenomenology (hep-ph) High Energy Physics - Theory (hep-th) 0103 physical sciences Landau pole Effective field theory Field theory (psychology) 010307 mathematical physics Quantum field theory 010306 general physics Mathematical Physics |
Zdroj: | Theoretical and Mathematical Physics. 200:1176-1192 |
ISSN: | 1573-9333 0040-5779 |
Popis: | Leading logarithms (LLs) in massless non-renormalizable effective field theories (EFTs) can be computed with the help of non-linear recurrence relations. These recurrence relations follow from the fundamental requirements of unitarity, analyticity and crossing symmetry of scattering amplitudes and generalize the renormalization group technique for the case of non-renormalizable EFTs. We review the existing exact solutions of non-linear recurrence relations relevant for field theoretical applications. We introduce the new class of quantum field theories (quasi-renormalizable field theories) in which the resummation of LLs for $2 \to 2$ scattering amplitudes gives rise to a possibly infinite number of the Landau poles. Comment: 21 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |