The New Charm-Strange Resonances in the D−K+ Channel

+D%2B+D-+K%2B%22&type=SU">B+ --> D+ D- K+, 010306 general physics, sum rule: Laplace, Quantum chromodynamics, Physics, QCD sum rules, Exotic hadrons, [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th], 010308 nuclear & particles physics, scattering, hadron: molecule, tetraquark, stability, Quantum number, LHC-B, High Energy Physics - Phenomenology, High Energy Physics - Theory (hep-th), Masses and decay constants, [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], High Energy Physics::Experiment, Tetraquark, Sum rule in quantum mechanics, quark: condensation -->
Popis: We evaluate the masses and decay constants of the $0^+$ and $1^-$ open-charm $(\bar{c}\bar{d})(us)$ tetraquarks and molecular states from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LSR). This method takes into account the stability criteria where the factorized perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the $D^- K^+$ invariant mass recently reported by LHCb from $B^+ \to D^+(D^- K^+)$ decays. We expect that the resonance near the $D^- K^+$ threshold can be originated from the $0^{+}(D^-K^+)$ molecule and/or $D^- K^+$ scattering. The $X_0(2900)$ scalar state and the resonance $X_J(3150)$ (if $J = 0$) can emerge from a minimal mixing model, with a tiny mixing angle $\theta_0 \simeq (5.2 \pm 1.9)^0$, between a scalar Tetramole $({\cal T}_{\!\!{\cal M}0})$ (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers), having a mass $M_{{\cal T}_{\!\!{\cal M}0}} = 2743(18)$ MeV, and the first radial excitation of the $D^- K^+$ molecule with mass $M_{(DK)_1} = 3678(310)$ MeV. In an analogous way, the $X_1(2900)$ and the $X_J(3350)$ (if $J = 1$) could be a mixture between the vector Tetramole $({\cal T}_{\!\!{\cal M}1})$, with a mass $M_{{\cal T}_{\!\!{\cal M}1}} = 2656(20)$ MeV, and its first radial excitation having a mass $M_{{\cal T}_{\!\!{\cal M}1}} = 4592(141)$ MeV with an angle $\theta_0 \simeq (9.1 \pm 0.6)^0$. A (non)-confirmation of these statements requires experimental findings of the quantum numbers of the resonances at $3150$ and $3350$ MeV.
Comment: Talk given at 23rd High-Energy Physics International Conference in Quantum Chromodynamics (QCD 20, 35th anniversary), 27-30 October 2020, Montpellier-France (v2: typos corrected, results unchanged)
ISSN: 2405-6014
DOI: 10.1016/j.nuclphysbps.2021.05.032
DOI: 10.1016/j.nuclphysbps.2021.05.032⟩
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::25fe160654990072be013b2ba2170279
https://doi.org/10.1016/j.nuclphysbps.2021.05.032
Rights: OPEN
Přírůstkové číslo: edsair.doi.dedup.....25fe160654990072be013b2ba2170279
Autor: G. Randriamanatrika, D. Rabetiarivony, Stephan Narison, R.M. Albuquerque
Přispěvatelé: Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2021
Předmět:
High Energy Physics - Theory
Quark
Nuclear and High Energy Physics
Particle physics
Scalar (mathematics)
FOS: Physical sciences
mixing angle
quantum number
operator product expansion
01 natural sciences
quantum chromodynamics: correction
gluon: condensation
Perturbative and non-perturbative QCD
High Energy Physics - Experiment
High Energy Physics - Experiment (hep-ex)
High Energy Physics - Phenomenology (hep-ph)
sum rule: spectral
excited state
0103 physical sciences
[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]
Invariant mass
B+ --> D+ D- K+
010306 general physics
sum rule: Laplace
Quantum chromodynamics
Physics
QCD sum rules
Exotic hadrons
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
010308 nuclear & particles physics
scattering
hadron: molecule
tetraquark
stability
Quantum number
LHC-B
High Energy Physics - Phenomenology
High Energy Physics - Theory (hep-th)
Masses and decay constants
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
High Energy Physics::Experiment
Tetraquark
Sum rule in quantum mechanics
quark: condensation
Zdroj: Nucl.Part.Phys.Proc.
23rd High-Energy Physics International Conference in Quantum Chromodynamics
23rd High-Energy Physics International Conference in Quantum Chromodynamics, Oct 2020, Montpellier, France. pp.15290, ⟨10.1016/j.nuclphysbps.2021.05.032⟩
ISSN: 2405-6014
DOI: 10.1016/j.nuclphysbps.2021.05.032
Popis: We evaluate the masses and decay constants of the $0^+$ and $1^-$ open-charm $(\bar{c}\bar{d})(us)$ tetraquarks and molecular states from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LSR). This method takes into account the stability criteria where the factorized perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the $D^- K^+$ invariant mass recently reported by LHCb from $B^+ \to D^+(D^- K^+)$ decays. We expect that the resonance near the $D^- K^+$ threshold can be originated from the $0^{+}(D^-K^+)$ molecule and/or $D^- K^+$ scattering. The $X_0(2900)$ scalar state and the resonance $X_J(3150)$ (if $J = 0$) can emerge from a minimal mixing model, with a tiny mixing angle $\theta_0 \simeq (5.2 \pm 1.9)^0$, between a scalar Tetramole $({\cal T}_{\!\!{\cal M}0})$ (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers), having a mass $M_{{\cal T}_{\!\!{\cal M}0}} = 2743(18)$ MeV, and the first radial excitation of the $D^- K^+$ molecule with mass $M_{(DK)_1} = 3678(310)$ MeV. In an analogous way, the $X_1(2900)$ and the $X_J(3350)$ (if $J = 1$) could be a mixture between the vector Tetramole $({\cal T}_{\!\!{\cal M}1})$, with a mass $M_{{\cal T}_{\!\!{\cal M}1}} = 2656(20)$ MeV, and its first radial excitation having a mass $M_{{\cal T}_{\!\!{\cal M}1}} = 4592(141)$ MeV with an angle $\theta_0 \simeq (9.1 \pm 0.6)^0$. A (non)-confirmation of these statements requires experimental findings of the quantum numbers of the resonances at $3150$ and $3350$ MeV.
Comment: Talk given at 23rd High-Energy Physics International Conference in Quantum Chromodynamics (QCD 20, 35th anniversary), 27-30 October 2020, Montpellier-France (v2: typos corrected, results unchanged)
Databáze: OpenAIRE