Supercurrent Interference in Few-Mode Nanowire Josephson Junctions

Autor: Dmitry I. Pikulin, Jun Chen, Kun Zuo, Sebastien Plissard, Daniel Szombati, Vincent Mourik, David J. van Woerkom, Bas Nijholt, V. P. Ostroukh, Epam Erik Bakkers, Leo P. Kouwenhoven, Attila Geresdi, Diana Car, Anton R. Akhmerov, Sergey Frolov
Přispěvatelé: Advanced Nanomaterials & Devices, Delft University of Technology (TU Delft), Laboratoire de recherche sur les propriétés des matériaux nouveaux (LRPMN), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Harvard University [Cambridge], Équipe Matériaux et Procédés pour la Nanoélectronique (LAAS-MPN), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Eindhoven University of Technology [Eindhoven] (TU/e), Department of Physics and Astronomy [Pittsburgh], University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE)-Pennsylvania Commonwealth System of Higher Education (PCSHE), Harvard University, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)
Rok vydání: 2017
Předmět:
Josephson effect
Nanowire
FOS: Physical sciences
General Physics and Astronomy
02 engineering and technology
01 natural sciences
Pi Josephson junction
symbols.namesake
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
Condensed Matter::Superconductivity
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
[CHIM.CRIS]Chemical Sciences/Cristallography
010306 general physics
Superconductivity
Physics
Zeeman effect
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed matter physics
Supercurrent
[CHIM.MATE]Chemical Sciences/Material chemistry
021001 nanoscience & nanotechnology
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
3. Good health
Magnetic field
MAJORANA
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
symbols
0210 nano-technology
Zdroj: Physical Review Letters
Physical Review Letters, 119(18):187704. American Physical Society
Physical Review Letters, American Physical Society, 2017, 119 (18), pp.187704. ⟨10.1103/PhysRevLett.119.187704⟩
ResearcherID
Physical Review Letters, 119(18)
Physical Review Letters, 2017, 119 (18), pp.187704. ⟨10.1103/PhysRevLett.119.187704⟩
Physical Review Letters, 119, 187704
ISSN: 0031-9007
1079-7114
0021-3640
DOI: 10.1103/physrevlett.119.187704
Popis: Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions and find that their critical currents in the few mode regime are strongly suppressed by magnetic field. Furthermore, the dependence of the critical current on magnetic field exhibits gate-tunable nodes. Based on a realistic numerical model we conclude that the Zeeman effect induced by the magnetic field and the spin-orbit interaction in the nanowire are insufficient to explain the observed evolution of the Josephson effect. We find the interference between the few occupied one-dimensional modes in the nanowire to be the dominant mechanism responsible for the critical current behavior. The suppression and non-monotonic evolution of critical currents at finite magnetic field should be taken into account when designing circuits based on Majorana bound states.
Published version, ref 36 included here
Databáze: OpenAIRE