Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies
Autor: | Fernando de la Calle, Paz Zúñiga, Carmen Cuevas, Jesus Ricardo Alvarado Garcia, Elena G. Gonzalez, Xulio Benítez |
---|---|
Rok vydání: | 2020 |
Předmět: |
lcsh:Biotechnology
Bioengineering Pederin Computational biology Biology Applied Microbiology and Biotechnology Biochemistry 03 medical and health sciences chemistry.chemical_compound Intergenic region Marine bacteriophage RNA Ribosomal 16S lcsh:TP248.13-248.65 Drug Discovery Animals Phylogeny Research Articles Pyrans 030304 developmental biology 0303 health sciences Bacteria 030306 microbiology Drug discovery Ribosomal RNA 16S ribosomal RNA Isolation (microbiology) biology.organism_classification chemistry Research Article Biotechnology |
Zdroj: | Microbial Biotechnology, Vol 14, Iss 1, Pp 241-250 (2021) Microbial Biotechnology |
ISSN: | 1751-7915 |
DOI: | 10.1111/1751-7915.13679 |
Popis: | A new strategy of high‐throughput cultivation of bacteria inspired by a Dilution‐to‐Extinction methodology for the isolation and screening of new cytotoxic compound‐producing marine bacteria. A marine sponge tissue was directly used as inoculum and the results were compared with the data obtained through the direct plating isolation method. Results validate the combination of DTE with a 384‐plate format and antiproliferative tests for the exploration of cultures for mew marine strains and pave the way for future potential applications. Summary The continued development of culturing technologies for the discovery of new molecules from marine microbes is of paramount importance for drug discovery. Coupled with this, the use of the high‐throughput approach shows promise for increasing the number of Gram‐negative and non‐filamentous bacteria cultures that can be surveyed, since they show a lower potential of bioactivity. In this work, we propose a new strategy of high‐throughput cultivation of bacteria inspired by a dilution‐to‐extinction (DTE) methodology for the isolation of, and screening for, new cytotoxic compound producing marine bacteria. A marine sponge tissue was directly used as inoculum and the results were compared with the data obtained through the direct plating isolation method. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC‐PCR) genomic fingerprinting indicated the isolation of four bioactive strains, three of them producers of a pederin‐like compound, and the fourth one able to synthesize a different compound, still unidentified, rendered by the DTE approach, in comparison with one bioactive strain identified through the plating method. Analyses based on the 16S rRNA gene data showed the existence of two different species belonging to the genus Labrenzia. The efficiency and diversity ratio in the number of isolates and compounds are discussed. In view of the results, the proposed DTE approach proved to be efficient for the isolation of new cytotoxic compounds of marine origin and pave the way for future potential applications. |
Databáze: | OpenAIRE |
Externí odkaz: |