Language recognition on unknown conditions: the LORIA-Inria-MULTISPEECH system for AP20-OLR Challenge
Autor: | Irina Illina, Raphaël Duroselle, Sahidullah, Denis Jouvet |
---|---|
Přispěvatelé: | Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Experiments presented in this paper were carried out using the Grid5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr). This work has been partly funded by the French Direction Genérale de l’Armement., Grid'5000, Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Channel (digital image)
Computer science Generalization Speech recognition 020206 networking & telecommunications 02 engineering and technology Regularization (mathematics) Bottleneck Domain (software engineering) Task (project management) 030507 speech-language pathology & audiology 03 medical and health sciences Robustness (computer science) Language recognition 0202 electrical engineering electronic engineering information engineering [INFO]Computer Science [cs] domain generalization 0305 other medical science Selection (genetic algorithm) channel mismatch |
Zdroj: | Interspeech Interspeech, Aug 2021, Brno, Czech Republic INTERSPEECH 2021 INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-276⟩ |
DOI: | 10.21437/Interspeech.2021-276⟩ |
Popis: | International audience; We describe the LORIA-Inria-MULTISPEECH system submitted to the Oriental Language Recognition AP20-OLR Challenge. This system has been specifically designed to be robust to unknown conditions: channel mismatch (task 1) and noisy conditions (task 3). Three sets of studies have been carried out for elaborating the system: design of multilingual bottleneck features, selection of robust features by evaluating language recognition performance on an unobserved channel, and design of the final models with different loss functions which exploit channel diversity within the training set. Key factors for robustness to unknown conditions are data augmentation techniques, stochastic weight averaging, and regularization of TDNNs with domain robustness loss functions. The final system is the combination of four TDNNs using bottleneck features and one GMM using SDC-MFCC features. Within the AP20-OLR Challenge, it achieves the top performance for tasks 1 and 3 with a $C_{avg}$ of respectively 0.0239 and 0.0374. This validates the approach for generalization to unknown conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |