Estimation of a discrete probability under constraint of $k$-monotonicity

Autor: Jade Giguelay
Přispěvatelé: Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE), Institut National de la Recherche Agronomique (INRA), Giguelay, Jade
Rok vydání: 2017
Předmět:
Zdroj: Electronic journal of statistics
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2017, 11, pp.1-49. ⟨10.1214/16-EJS1220⟩
Electron. J. Statist. 11, no. 1 (2017), 1-49
Electronic Journal of Statistics (11), 1-49. (2017)
Electronic Journal of Statistics
Electronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2017, 11, pp.1-49. ⟨10.1214/16-EJS1220⟩
ISSN: 1935-7524
DOI: 10.1214/16-ejs1220
Popis: We propose two least-squares estimators of a discrete probability under the constraint of k-monotony and study their statistical properties. We give a characterization of these estimators based on the decomposition on a spline basis of k-monotone sequences. We develop an algorithm derived from the Support Reduction Algorithm and we finally present a simulation study to illustrate their properties.
Comment: 53 pages, 35 figures
Databáze: OpenAIRE