Cholesterol-Mediated Activation of P-Glycoprotein: Distinct Effects on Basal and Drug-Induced ATPase Activities

Autor: Priska M. Elsener, Sara Belli, Heidi Wunderli-Allenspach, Stefanie D. Krämer
Rok vydání: 2009
Předmět:
Zdroj: Journal of Pharmaceutical Sciences. 98:1905-1918
ISSN: 0022-3549
DOI: 10.1002/jps.21558
Popis: Cholesterol promotes basal and verapamil-induced ATPase activity of P-glycoprotein (P-gp). We investigated whether these effects are related to each other and to the impact of the sterol on bilayer fluidity and verapamil membrane affinity. P-gp was reconstituted in egg-phosphatidylcholine (PhC) liposomes with or without cholesterol, 1,2-dipalmitoyl-phosphatidylcholine (DPPC), alpha-tocopherol (alpha-Toc) or 2,2,5,7,8-pentamethyl-6-chromanol (PMC). Basal and verapamil-induced ATPase activities were studied with an enzymatic assay. Membrane fluidity was characterized with diphenyl-hexatriene anisotropy measurements and membrane affinity by equilibrium dialysis. DPPC (70% mol/mol) decreased the fluidity of PhC bilayers to the same level as 20% cholesterol. PMC (20%) and alpha-Toc (20%) decreased the fluidity to lesser extents. alpha-Toc and PMC, but not DPPC increased the verapamil membrane affinity. While 20% cholesterol strikingly enhanced the basal ATPase activity, none of the other constituents had a similar effect. In contrast, verapamil stimulation of P-gp ATPase activity was not only enabled by cholesterol but also by alpha-Toc and DPPC. PMC had no effect. In conclusion, cholesterol exerts distinct effects on basal and verapamil-induced ATPase activity. The influence on basal ATPase activity is sterol-specific while its effect on verapamil-induced ATPase activity is unspecific and not related to its influence on membrane fluidity and on verapamil membrane affinity.
Databáze: OpenAIRE