A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
Autor: | A. Moya, I. Creus-Martí, F. J. Santonja |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto de Salud Carlos III, Generalitat Valenciana, Asociación Española Contra el Cáncer, European Commission |
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Mathematical optimization Multidisciplinary Article Subject General Computer Science Computer science Maximum likelihood QA75.5-76.95 01 natural sciences Dirichlet distribution 010104 statistics & probability 03 medical and health sciences symbols.namesake 030104 developmental biology Autoregressive model Electronic computers. Computer science symbols 0101 mathematics Time series |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Complexity, Vol 2021 (2021) Complexity r-FISABIO. Repositorio Institucional de Producción Científica |
ISSN: | 1099-0526 1076-2787 |
Popis: | Growing interest in understanding microbiota dynamics has motivated the development of different strategies to model microbiota time series data. However, all of them must tackle the fact that the available data are high-dimensional, posing strong statistical and computational challenges. In order to address this challenge, we propose a Dirichlet autoregressive model with time-varying parameters, which can be directly adapted to explain the effect of groups of taxa, thus reducing the number of parameters estimated by maximum likelihood. A strategy has been implemented which speeds up this estimation. The usefulness of the proposed model is illustrated by application to a case study. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (projects MTM2017-83850-P, SAF2012-31187, SAF2013-49788-EXP, and SAF2015-65878-R), Carlos III Institute of Health (projects PIE14/00045 and AC15/00022), Generalitat Valenciana (projects PrometeoII/2014/065 and Prometeo/2018/A/133), and Asociación Española Contra el Cancer (project AECC 2017–1485) and cofinanced by the European Regional Development Fund (ERDF). |
Databáze: | OpenAIRE |
Externí odkaz: |