Non-commutative integrable systems on $b$-symplectic manifolds

Autor: Eva Miranda, Anna Kiesenhofer
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Pure mathematics
Integrable system
Geometria diferencial
Varietats diferenciables
Poisson manifoldsb-symplectic manifoldsnoncommutative integrable systemsaction-angle coordinates
Structure (category theory)
Boundary (topology)
b-symplectic manifolds
01 natural sciences
Varietats topològiques
Mathematics (miscellaneous)
Poisson manifold
0103 physical sciences
FOS: Mathematics
Poisson manifolds
0101 mathematics
noncommutative integrable
Commutative property
Mathematics::Symplectic Geometry
Mathematics
Differentiable manifolds
action-angle coordinates
010102 general mathematics
Matemàtiques i estadística::Topologia::Varietats topològiques [Àrees temàtiques de la UPC]
Torus
Manifold
noncommutative integrable systems
Mathematics - Symplectic Geometry
Topological manifolds
Poisson distribution
Symplectic Geometry (math.SG)
systems
010307 mathematical physics
Poisson
Distribució de

Geometry
Differencial

Symplectic geometry
Enginyeria mecànica::Mecànica de fluids [Àrees temàtiques de la UPC]
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: In this paper we study noncommutative integrable systems on b-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering noncommutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and prove an action-angle theorem for noncommutative integrable systems on a b-symplectic manifold in a neighborhood of a Liouville torus inside the critical set of the Poisson structure associated to the b-symplectic structure.
Databáze: OpenAIRE