Design and field testing of a non-linear single-beam echosounder for multi-frequency seabed characterization

Autor: Michel Legris, Gilles Le Chenadec, Philippe Blondel, Jacques Marchal, Irène Mopin, Benoit Zerr
Přispěvatelé: Equipe ROBotics for EXploration (Lab-STICC_ROBEX), Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT), École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Equipe Marine Mapping & Metrology (Lab-STICC_M3), Equipe Models and AlgoriThms for pRocessIng and eXtracting information (Lab-STICC_MATRIX), University of Bath [Bath]
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Applied Acoustics
Applied Acoustics, Elsevier, 2022, 187, pp.108490. ⟨10.1016/j.apacoust.2021.108490⟩
Applied Acoustics (0003-682X) (Elsevier BV), 2022-02, Vol. 187, P. 108490 (11p.)
Mopin, I, Marchal, J, Legris, M, Le Chenadec, G, Blondel, P & Zerr, B 2022, ' Design and field testing of a non-linear single-beam echosounder for multi-frequency seabed characterization ', Applied Acoustics, vol. 187, 108490 . https://doi.org/10.1016/j.apacoust.2021.108490
ISSN: 0003-682X
DOI: 10.1016/j.apacoust.2021.108490⟩
Popis: Seabed mapping and characterization are best performed using several frequencies and several angles of incidence. This is often an issue because of the need to employ different sonars, with distinct frequencies but co-located as much as possible to image the same patch of seafloor. This article presents the design, calibration and field testing of a multiple-frequency single-beam echosounder (SBES), mounted on a mechanical pan-and-tilt head. It uses very high transmitting levels to produce non-linear effects and generate harmonics of a 100 kHz fundamental frequency. PZT transducers are used to transmit high acoustic powers and PDVF transducers enable the reception of scattering levels over a very broad frequency band (for the different harmonics). Tank experiments are used to verify effective harmonic generation. The shock distance (at which harmonics are at their maximum level) is measured as 2 m from the transmitter and recommended as the minimum far-field range. Non-linear transmission losses (distinct from linear losses) are calibrated using a full metal sphere 38.1 mm in diameter and of known frequency response, up to ranges commensurate with the depths expected in the field ( ⩽ 30 m). The −3 dB beamwidth varies from 5.8 ° at 100 kHz to 2.8 ° at 300 kHz. Harmonics are used to resolve phase ambiguities in detecting seabed depths. Backscattering strengths BS are matched to the Generic Seafloor Acoustic Backscatter (GSAB) model to derive the best-fitting parameters. Field validation took place in the Bay of Brest (France) in May 2016, over three different types of seafloor (namely: sandy mud; gravel; gravelly coarse sand with maerl). Additional in situ calibration was used. The echosounder was pointed at angles from 0 ° (nadir) to 60 ° by 5 ° steps. One of the areas surveyed (“Carre Renard”), commonly used for instrument calibration and comparison with other measurements, showed differences 1 dB at 200 kHz. Videos and photographs of the seafloor were used to ground truth interpretations of the BS curves. The results show that these BS curves measured with the echosounder are relevant for seabed classification and characterization. The different shapes and levels of BS when compared to ground truth are coherent with the Jackson model. The main limit of this prototype of echosounder is the signal to noise ratio, in particular for high frequency harmonics ( ⩾ 400 kHz). The in situ calibration is unavoidable because of the non-linear parameter variations with water characteristics (temperature, salinity…). Calibrated BS curves from 100 kHz to 300 kHz can be directly compared to other measurements, for example to calibrate other instruments.
Databáze: OpenAIRE