Migration of a generic multi-physics framework to HPC environments

Autor: Pooyan Dadvand, Eugenio Oñate, Riccardo Rossi, E. Juanpere, Sergio Idelsohn, Marisa Gil, Jordi Cotela, Xavier Martorell
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Rok vydání: 2013
Předmět:
Engineering
Civil

Theoretical computer science
Física::Física de fluids [Àrees temàtiques de la UPC]
General Computer Science
Distributed computing
Engineering
Multidisciplinary

010103 numerical & computational mathematics
Computational fluid dynamics
Serial code
Reuse
01 natural sciences
Field (computer science)
Fluid dynamics--Computer simulation
Engineering
Ocean

Domain decomposition
0101 mathematics
Dinàmica de fluids -- Simulació per ordinador
Engineering
Aerospace

Engineering
Biomedical

Informàtica::Programació [Àrees temàtiques de la UPC]
Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics [Àrees temàtiques de la UPC]
Parallelization
General Engineering
Dinàmica de fluids computacional
Solver
Computer Science
Software Engineering

Supercomputer
Data structure
Engineering
Marine

Engineering
Manufacturing

Engineering
Mechanical

010101 applied mathematics
Fluid dynamics--Computer programs
Engineering
Industrial

Scalability
Distributed memory
Dinàmica de fluids -- Informàtica
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Computers & Fluids
Scipedia Open Access
Scipedia SL
Recercat. Dipósit de la Recerca de Catalunya
instname
ISSN: 0045-7930
DOI: 10.1016/j.compfluid.2012.02.004
Popis: Creating a highly parallelizable code is a challenge specially for Distributed Memory Machines (DMMs). Moreover, algorithms and data structures suitable for these platforms can be very different from the ones used in serial code. For this reason, many programmers in the field prefer to start their own code from scratch. However, for an already existing framework supported by a long-time expertise the idea of transformation becomes attractive in order to reuse the effort done during years of development. In this presentation we explain how a relatively complex framework but with modular structure can be prepared for high performance computing with minimum modification. Kratos Multi-Physics [1] is an open source generic multi-disciplinary platform for solution of coupled problems consist of fluid, structure, thermal and electromagnetic fields. The parallelization of this framework is performed with objective of enforcing the less possible changes to its different solver modules and encapsulate the changes as much as possible in its common kernel. This objective is achieved thanks to the Kratos design and also innovative way of dealing with data transfers for a multi-disciplinary code. This work is completed by the migration of the framework from the 86× architecture to the Marenostrum Supercomputing platform. The migration has been verified by a set of benchmarks which show high scalability, from which we present the Telescope problem in this paper.
Databáze: OpenAIRE