Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity?
Autor: | Ali Mostafazadeh |
---|---|
Přispěvatelé: | Mostafazadeh, Ali (ORCID 0000-0002-0739-4060 & YÖK ID 4231), College of Sciences, Department of Department of Mathematics |
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: |
Physics
Quantum Physics Hilbert space FOS: Physical sciences Klein-Gordon fields Quantum-mechanics Pt-symmetry Hilbert-space Real spectrum Hamiltonians Oscillator Equivalent States Model Statistical and Nonlinear Physics Linear map symbols.namesake Operator (computer programming) Mathematical physics Homogeneous space symbols Quantum Physics (quant-ph) Hamiltonian (quantum mechanics) Quantum Mathematical Physics |
Zdroj: | Journal of Mathematical Physics |
Popis: | For a weakly pseudo-Hermitian linear operator, we give a spectral condition that ensures its pseudo-Hermiticity. This condition is always satisfied whenever the operator acts in a finite-dimensional Hilbert space. Hence weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite-dimensions. This equivalence extends to a much larger class of operators. Quantum systems whose Hamiltonian is selected from among these operators correspond to pseudo-Hermitian quantum systems possessing certain symmetries. published version, 10 pages |
Databáze: | OpenAIRE |
Externí odkaz: |