Spotting handwritten words and REGEX using a two stage BLSTM-HMM architecture

Autor: Thierry Paquet, Clément Chatelain, Luc Mioulet, Gautier Bideault
Přispěvatelé: Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU), Equipe Apprentissage (DocApp - LITIS), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Chatelain, Clément
Rok vydání: 2015
Předmět:
Zdroj: DRR
Document Recognition and retrieval
Document Recognition and retrieval, 2015, San Francisco, United States
Document Recognition and Retrieval
Document Recognition and Retrieval, 2015, San Fransisco, United States
ISSN: 0277-786X
DOI: 10.1117/12.2075796
Popis: International audience; In this article, we propose a hybrid model for spotting words and regular expressions (REGEX) in handwritten documents. The model is made of the state-of-the-art BLSTM (Bidirectional Long Short Time Memory) neural network for recognizing and segmenting characters, coupled with a HMM to build line models able to spot the desired sequences. Experiments on the Rimes database show very promising results.
Databáze: OpenAIRE