On the extension of bi-Lipschitz mappings
Autor: | Lev Birbrair, Alexandre Fernandes, Zbigniew Jelonek |
---|---|
Rok vydání: | 2020 |
Předmět: |
Semialgebraic set
Pure mathematics General Mathematics 010102 general mathematics Dimension (graph theory) Mathematics::Optimization and Control General Physics and Astronomy Geometric Topology (math.GT) Extension (predicate logic) Lipschitz continuity 01 natural sciences Homeomorphism Mathematics::Logic Mathematics - Geometric Topology FOS: Mathematics Embedding 0101 mathematics Algebraic number Mathematics |
DOI: | 10.48550/arxiv.2001.00753 |
Popis: | Let X be a closed semialgebraic set of dimension k. If n≥2k+1, then there is a bi-Lipschitz and semialgebraic embedding of X into Rn. Moreover, if n≥2k+2, then this embedding is unique (up to a bi-Lipschitz and semialgebraic homeomorphism of Rn). We also give local and complex algebraic counterparts of these results. |
Databáze: | OpenAIRE |
Externí odkaz: |