On the extension of bi-Lipschitz mappings

Autor: Lev Birbrair, Alexandre Fernandes, Zbigniew Jelonek
Rok vydání: 2020
Předmět:
DOI: 10.48550/arxiv.2001.00753
Popis: Let X be a closed semialgebraic set of dimension k. If n≥2k+1, then there is a bi-Lipschitz and semialgebraic embedding of X into Rn. Moreover, if n≥2k+2, then this embedding is unique (up to a bi-Lipschitz and semialgebraic homeomorphism of Rn). We also give local and complex algebraic counterparts of these results.
Databáze: OpenAIRE