Popis: |
In the present study, a two-step thermo-mechanical processing consisting of cold work and heat treatment steps was performed to increase the operating temperature of 316 austenitic stainless steels. A hierarchical microstructure of thermally-stable, nano twin bands was achieved forming into bundles in elongated grains. The mechanical response of the samples with this microstructure was evaluated through uniaxial tension tests at temperatures ranging from 20 °C to 500 °C and compared with those from the fully annealed samples. The results demonstrate that such hierarchical microstructure leads to a significant increase in the elevated temperature yield strengths due to the presence of nano-twin boundaries and resulting decrease in dislocation mean free path and increase in dislocation storage capacity. In fact, the yield strength ratio of the twinned and annealed samples increases with increasing temperature up to 500 °C, indicating the effectiveness of pre-existing thermally-stable twin boundaries as the strengthening source at temperatures as high as 0.46 homologous temperature. The hierarchical microstructure also led to irregular serrations through dynamic strain aging in the stress-strain response at 500 °C, which is attributed to the bi-modal microstructural length-scales present in the structure affecting the diffusion distances during dynamic strain aging. This structure also increases the tensile strength, and without a total loss in ductility, even though the flow stress of the twinned samples surpasses the tensile strength of the annealed samples, especially at elevated temperatures. Total hardening rate is consistently higher in the twinned samples as compared to the annealed samples, indicating the positive role of nano-twin boundaries in the dislocation storage capacity at elevated temperatures. Overall, the present study clearly demonstrate the positive role of thermally stable nano-twins on the elevated temperature mechanical response of austenitic stainless steels. |