On the Eve property for CSBP
Autor: | Cyril Labbé, Thomas Duquesne |
---|---|
Přispěvatelé: | Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2013 |
Předmět: |
Statistics and Probability
Property (philosophy) Population Branching (linguistics) frequency distribution 60E07 Calculus FOS: Mathematics education Branching process Mathematics Ancestor 60J80 education.field_of_study Grey martingale Probability (math.PR) State (functional analysis) Eve [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] Population model Continuous state branching process 60G55 dust Statistics Probability and Uncertainty AMS 2010 Primary 60J80 Secondary 60E07 60G55 Mathematical economics Mathematics - Probability |
Zdroj: | Electronic Journal of Probability Electronic Journal of Probability, 2014, 19 (6), pp.1-31. ⟨10.1214/EJP.v19-2831⟩ Electron. J. Probab. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2014, 19 (6), pp.1-31. ⟨10.1214/EJP.v19-2831⟩ |
ISSN: | 1083-6489 |
DOI: | 10.48550/arxiv.1305.6502 |
Popis: | International audience; We consider the population model associated to continuous state branching processes and we are interested in the so-called Eve property that asserts the existence of an ancestor with an overwhelming progeny at large times, and more generally, in the possible behaviours of the frequencies among the population at large times. In this paper, we classify all the possible behaviours according to the branching mechanism of the continuous state branching process. |
Databáze: | OpenAIRE |
Externí odkaz: |