Associating and tuning sodium and oxygen mixed-ion conduction in niobium-based perovskites
Autor: | Fabrice Mauvy, Thierry Le Mercier, Alain Demourgues, Guillaume Gouget, Sébastien Fourcade, Mathieu Duttine, U-Chan Chung, Marc-David Braida |
---|---|
Přispěvatelé: | Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Solvay (France), This work was supported by Solvay and CNRS., Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
sodium conductivity
Materials science Sodium Inorganic chemistry Niobium chemistry.chemical_element Spark plasma sintering 02 engineering and technology 010402 general chemistry 01 natural sciences Oxygen Ion Biomaterials oxygen conductivity mixed ion conduction Electrochemistry [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics Thermal conduction 0104 chemical sciences Electronic Optical and Magnetic Materials chemistry niobate perovskites 0210 nano-technology spark plasma sintering |
Zdroj: | Advanced Functional Materials Advanced Functional Materials, Wiley, 2020, 30 (11), 1909254 (12 p.). ⟨10.1002/adfm.201909254⟩ |
ISSN: | 1616-301X 1616-3028 |
Popis: | International audience; Pure ionic conductors as solid‐state electrolytes are of high interest in electrochemical energy storage and conversion devices. They systematically involve only one ion as the charge carrier. The association of two mobile ionic species, one positively and the other negatively charged, in a specific network should strongly influence the total ion conduction. Nb5+‐ (4d0) and Ti4+‐based (3d0) derived‐perovskite frameworks containing Na+ and O2− as mobile species are investigated as mixed ion conductors by electrochemical impedance spectroscopy. The design of Na+ blocking layers via sandwiched pellet sintered by spark plasma sintering at high temperatures leads to quantified transport number of both ionic charge carriers tNa+ and tO2−. In the 350–700 °C temperature range, ionic conductivity can be tuned from major Na+ contribution (tNa+ = 88%) for NaNbO3 to pure O2− transport in NaNb0.9Ti0.1O2.95 phase. Such a Ti‐substitution is accompanied with a ≈100‐fold increase in the oxygen conductivity, approaching the best values for pure oxygen conductors in this temperature range. Besides the demonstration of tunable mixed ion conduction with quantifiable cationic and anionic contributions in a single solid‐state structure, a strategy is established from structural analysis to develop other architectures with improved mixed ionic conductivity. |
Databáze: | OpenAIRE |
Externí odkaz: |