Biobased Chemicals
Autor: | Selim Sami, Hero J. Heeres, Caelan Randolph, Ciaran W. Lahive, Peter J. Deuss, Remco W. A. Havenith |
---|---|
Přispěvatelé: | Chemical Technology, Molecular Energy Materials, Theoretical Chemistry |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Benzenetriol
Dimer hydroxyquinone Electrophilic aromatic substitution 010402 general chemistry biobased chemicals 01 natural sciences Article BIOMASS chemistry.chemical_compound Reactivity (chemistry) Physical and Theoretical Chemistry Hydroxyquinone Bifunctional EXCHANGE Biphenyl deuteration dimerization 5-HYDROXYMETHYL-2-FURALDEHYDE 010405 organic chemistry Chemistry Organic Chemistry hydroxybenzenes Combinatorial chemistry 0104 chemical sciences CONVERSION Physics and Astronomy ACID Hydrogen–deuterium exchange |
Zdroj: | Organic Process Research & Development ORGANIC PROCESS RESEARCH & DEVELOPMENT Organic Process Research & Development, 22(12), 1663-1671. AMER CHEMICAL SOC INC |
ISSN: | 1083-6160 1520-586X |
Popis: | 1,2,4-Benzenetriol (BTO), sourced from the carbohydrate-derived platform chemical 5-hydroxylmethylfurfural (HMF), is an interesting starting point for the synthesis of various biobased aromatic products. However, BTO readily undergoes dimerization and other reactions under mild conditions, making analysis and isolation challenging. To both control and utilize the reactivity of BTO to produce biobased building blocks, its reactivity needs to be better understood. Here it was found that specific BTO aromatic C-H bonds are reactive toward deuterium exchange with D2O, which appears pronounced under acidic conditions at room temperature and can lead to the selective formation of BTO with an aromatic ring that contains one or two deuterium atoms, the first at the five and the second at the three position. By exposure to air, it was shown that BTO forms a 5,5'-linked BTO dimer [1,1'-biphenyl]-2,2',4,4',5,5'-hexaol (1) and subsequently a hydroxyquinone containing dimeric structure 2',4,4',5'-tetrahydroxy-[1,1'-biphenyl]-2,5-dione (2). Additionally, condensed dimer dibenzo[b,d]furan-2,3,7,8-tetraol (3) can be relatively easily accessed. The controlled formation of these symmetric and asymmetric multifunctional dimers illustrates diverse possibilities for BTO to be converted to valuable biobased aromatic compounds. Deuterium exchange was attributed to electrophilic aromatic substitution because this reactivity was found to be independent of oxygen and acid mediated. On the contrary, the dimerization was dependent on the presence of oxygen and thus likely involves radical intermediates. Thus this report overall displays different accessible reaction pathways for BTO that can be exploited for the production of BTO-derived compounds. |
Databáze: | OpenAIRE |
Externí odkaz: |