A bound on the number of rationally invisible repelling orbits

Autor: Núria Fagella, Anna Miriam Benini
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Dipòsit Digital de la UB
Universidad de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Popis: We consider entire transcendental maps with bounded set of singular values such that periodic rays exist and land. For such maps, we prove a refined version of the Fatou-Shishikura inequality which takes into account rationally invisible periodic orbits, that is, repelling cycles which are not landing points of any periodic ray. More precisely, if there are q ∞ singular orbits, then the sum of the number of attracting, parabolic, Siegel, Cremer or rationally invisible orbits is bounded above by q. In particular, there are at most q rationally invisible repelling periodic orbits. The techniques presented here also apply to the more general setting in which the function is allowed to have infinitely many singular values.
Databáze: OpenAIRE