Conjugacy and Dynamics in Almost Automorphism Groups of Trees
Autor: | Gil Goffer, Waltraud Lederle |
---|---|
Přispěvatelé: | UCL - SST/IRMP - Institut de recherche en mathématique et physique |
Rok vydání: | 2019 |
Předmět: |
Automorphism group
Regular tree tree almost automorphisms orbital types General Mathematics 010102 general mathematics strand diagrams Group Theory (math.GR) Automorphism 01 natural sciences Combinatorics Tree (descriptive set theory) Mathematics::Group Theory 20E45 20E08 20E32 22D05 37E25 Conjugacy class 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Conjugacy Neretin’s group Mathematics - Group Theory Mathematics |
Zdroj: | International Journal of Algebra and Computation, Vol. 31, no.08, p. 1497-1545 (2021) |
DOI: | 10.48550/arxiv.1911.01974 |
Popis: | We determine when two almost automorphisms of a regular tree are conjugate. This is done by combining the classification of conjugacy classes in the automorphism group of a level-homogeneous tree by Gawron, Nekrashevych and Sushchansky and the solution of the conjugacy problem in Thompson's $V$ by Belk and Matucci. We also analyze dynamics of tree almost automorphisms. Comment: statements about closures of conjugacy classes added; presentation improved; 27 figures |
Databáze: | OpenAIRE |
Externí odkaz: |