Minimal Configurations for the Frenkel-Kontorova Model on a Quasicrystal

Autor: J-M. Gambaudo, S. Petite, P. Guiraud
Přispěvatelé: Center for Mathematical Modelling - Centro de Modelamiento Matematico [Santiago] (CMM), Universidad de Chile = University of Chile [Santiago] (UCHILE)-Centre National de la Recherche Scientifique (CNRS), Departamento de Ingenería Matemática, (Departamento de Ingenería Matemática,), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Rok vydání: 2006
Předmět:
Zdroj: Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2006, 265 (1), pp.165-188. ⟨10.1007/s00220-006-1531-x⟩
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-006-1531-x
Popis: In this paper, we consider the Frenkel-Kontorova model of a one dimensional chain of atoms submitted to a potential. This potential splits into an interaction potential and a potential induced by an underlying substrate which is a quasicrystal. Under standard hypotheses, we show that every minimal configuration has a rotation number, that the rotation number varies continuously with the minimal configuration, and that every non negative real number is the rotation number of a minimal configuration. This generalizes well known results obtained by S. Aubry and P.Y. le Daeron in the case of a crystalline substrate.
Comment: 25 pages, 8 figures
Databáze: OpenAIRE