Transcriptome landscape of a bacterial pathogen under plant immunity
Autor: | Tatsuya Nobori, James M. Kremer, Jingni Wu, Kenichi Tsuda, Brian H. Kvitko, André C. Velásquez, Sheng Yang He, Yiming Wang |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Arabidopsis Plant Immunity Pseudomonas syringae chemical and pharmacologic phenomena Biology Bacterial growth Microbiology Transcriptome 03 medical and health sciences Immune system Bacterial Proteins Arabidopsis thaliana Gene Regulatory Networks Plant Diseases Multidisciplinary Innate immune system Bacteria SI Corrections Gene Expression Profiling fungi food and beverages Gene Expression Regulation Bacterial Plants biochemical phenomena metabolism and nutrition biology.organism_classification Plants Genetically Modified Bacterial Processes 030104 developmental biology PNAS Plus Host-Pathogen Interactions bacteria |
Zdroj: | Proceedings of the National Academy of Sciences of the United States of America |
ISSN: | 1091-6490 |
Popis: | Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta. We identified specific “immune-responsive” bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response. |
Databáze: | OpenAIRE |
Externí odkaz: |