Cutting and Slicing Weak Solids

Autor: Yves Pomeau, Serge Mora
Přispěvatelé: Physique et Mécanique des Milieux Divisés (PMMD), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'hydrodynamique (LadHyX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, American Physical Society, 2020, 125 (3), ⟨10.1103/PhysRevLett.125.038002⟩
ISSN: 0031-9007
1079-7114
DOI: 10.1103/PhysRevLett.125.038002⟩
Popis: International audience; Dicing soft solids with a sharp knife is quicker and smoother if the blade is sliding rapidly parallel to its edge in addition to the normal squeezing motion. We explain this common observation with a consistent theory suited for soft gels and departing from the standard theories of elastic fracture mechanics relied on for a century. The gel is assumed to fail locally when submitted to stresses exceeding a threshold σ 1. The changes in its structure generate a liquid layer coating the blade and transmitting the stress through viscous forces. The driving parameters are the ratio U=W of the normal to the tangential velocity of the blade, and the characteristic length ηW=σ 1 , with η the viscosity of the liquid layer. The existence of a maximal value of U=W for a steady regime explains the crucial role of the tangential velocity for slicing biological and other soft materials.
Databáze: OpenAIRE