Morphisms to noncommutative projective lines

Autor: Daniel Chan, Adam Nyman
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1912.02921
Popis: Let $k$ be a field, let ${\sf C}$ be a $k$-linear abelian category, let $\underline{\mathcal{L}}:=\{\mathcal{L}_{i}\}_{i \in \mathbb{Z}}$ be a sequence of objects in ${\sf C}$, and let $B_{\underline{\mathcal{L}}}$ be the associated orbit algebra. We describe sufficient conditions on $\underline{\mathcal{L}}$ such that there is a canonical morphism from the noncommutative space ${\sf Proj }B_{\underline{\mathcal{L}}}$ to a noncommutative projective line in the sense of \cite{abstractp1}, generalizing the usual construction of a map from a scheme $X$ to $\mathbb{P}^{1}$ defined by an invertible sheaf $\mathcal{L}$ generated by two global sections. We then apply our results to construct, for every natural number $d>2$, a degree two cover of Piontkovski's $d$th noncommutative projective line by a noncommutative elliptic curve in the sense of Polishchuk.
Minor corrections made. Final version, to appear in Proc. Amer. Math. Soc
Databáze: OpenAIRE