Edge-based procedural textures

Autor: Hansoo Kim, Bedrich Benes, Holly Rushmeier, Jean-Michel Dischler
Přispěvatelé: Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), univOAK, Archive ouverte
Rok vydání: 2021
Předmět:
Zdroj: The Visual Computer
The Visual Computer, Springer Verlag, 2021, 37 (9)
The Visual Computer, 2021, 37 (9)
ISSN: 1432-2315
0178-2789
Popis: We introduce an edge-based procedural texture (EBPT), a procedural model for semi-stochastic texture generation. EBPT quickly generates large textures from a small input image. EBPT focuses on edges as the visually salient features extracted from the input image and organizes into groups with clearly established spatial properties. EBPT allows the users to interactively or automatically design new textures by utilizing the edge groups. The output texture can be significantly larger than the input, and EBPT does not need multiple textures to mimic the input. EBPT-based texture synthesis consists of two major steps, input analysis and texture synthesis. The input analysis stage extracts edges, builds the edge groups, and stores procedural properties. The texture synthesis stage distributes edge groups with affine transformation. This step can be done interactively or automatically using the procedural model. Then, it generates the output using edge group-based seamless image cloning. We demonstrate our method on various semi-stochastic inputs. With just a few input parameters defining the final structure, our method can analyze the input size of $$512\times {512}$$ in 0.7 s and synthesize the output texture of $$2048\times {2048}$$ pixels in 0.5 s.
Databáze: OpenAIRE