Hydrothermal and thermal-alkali pretreatments of wheat straw: Co-digestion, substrate solubilization, biogas yield and kinetic study

Autor: Ali Mohammad Rahmani, Vinay Kumar Tyagi, Neelam Gunjyal, A.A. Kazmi, Chandra Shekhar P. Ojha, Konstantinos Moustakas
Rok vydání: 2022
Předmět:
Zdroj: Environmental research. 216(Pt 1)
ISSN: 1096-0953
Popis: Agro-waste having lignocellulosic biomass is considered most effective (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, recalcitrant lignocellulosic fraction in agro-waste obstructs its biotransformation and is a rate-limiting step of the process. This study investigated the effects of hydrothermal and thermal-alkaline pretreatment on anaerobic co-digestion of wheat straw (WS). The hydrothermal pretreatment of WS revealed that 60 min was the best pretreatment time to achieve the highest substrate solubilization. It was employed for thermal-alkali pretreatment at variable temperatures and NaOH doses. Thermal-alkali pretreatment at 125°C-7% NaOH shows the highest (34%) biogas yield of 662 mL/gVS, followed by 646 mL/gVS biogas yield at 150°C-1% NaOH assay (31% higher) over control. Although the 125°C-7% NaOH assay achieved the highest biogas yield, the 150°C-1% NaOH assay was found more feasible considering the cost of a 6% higher chemical used in the earlier assay. The thermal-alkali pretreatment was observed to reduce the formation of recalcitrant compounds (HMF, Furfural) and increase the buffering capacity of the slurry over hydrothermal pretreatment. Principal component analysis (PCA) of the various pretreatment and AD operational parameters was carried out to study their in-depth correlation. Moreover, a kinetic study of the experimental data was performed to observe the biodegradation trend and compare it with the Modified Gompertz (MG) and First Order (FO) models.
Databáze: OpenAIRE