Stellar migration in galaxy discs using the Chirikov diffusion rate

Autor: Herve Wozniak
Přispěvatelé: Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Angular momentum
Diffusion
FOS: Physical sciences
Astrophysics
Barred spiral galaxies
01 natural sciences
Dynamical evolution
[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]
Extragalactic astronomy
Galactic Archaeology
Galaxy evolution
0103 physical sciences
Galaxy formation and evolution
N-body simulations
010306 general physics
Adiabatic process
010303 astronomy & astrophysics
ComputingMilieux_MISCELLANEOUS
Galaxy stellar disks
Astrophysics::Galaxy Astrophysics
Physics
Astronomy and Astrophysics
Nonlinear Sciences - Chaotic Dynamics
Astrophysics - Astrophysics of Galaxies
Galaxy
Barred spiral galaxy
Distribution function
Galaxy dynamics
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]
[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]
Astrophysics::Earth and Planetary Astrophysics
Chaotic Dynamics (nlin.CD)
Lindblad resonance
Zdroj: The Astrophysical Journal
The Astrophysical Journal, American Astronomical Society, 2020, 889 (2), pp.81. ⟨10.3847/1538-4357/ab5fd1⟩
ISSN: 0004-637X
1538-4357
DOI: 10.48550/arxiv.1912.03218
Popis: We are re-examining the problem of stellar migration in disc galaxies from a diffusion perspective. We use for the first time the formulation of the diffusion rates introduced by \citet{1979PhR....52..263C}, applied to both energy $E$ and angular momentum $L_\mathrm{z}$ in self-consistent N$-$body experiments. We limit our study to the evolution of stellar discs well after the formation of the bar, in a regime of adiabatic evolution. We show that distribution functions of Chirikov diffusion rates have similar shapes regardless the simulations, but different slopes for energy and angular momentum. Distribution functions of derived diffusion time scales $T_D$ have also the same form for all simulations, but are different for $T_D(E)$ and $T_D(L_\mathrm{z})$. Diffusion time scales are strongly dependent on $L_\mathrm{z}$. $T_D(E) \lesssim 1$~Gyr in a $L_\mathrm{z}$ range roughly delimited by the set of stellar bar resonances (between the Ultra Harmonic Resonance and the Outer Lindblad Resonance). Only particles with low $L_\mathrm{z}$ have $T_D(L_\mathrm{z}) \lesssim 10$ Gyr, i.e. the simulation length. In terms of mass fraction, 35 to 42% turn out to diffuse energy in a characteristic time scale shorter than 10 Gyr, i.e. simulations length, while 60 to 64% undergo the diffusion of the angular momentum on the same time scale. Both the diffusion of $L_\mathrm{z}$ and $E$ are important in order to grasp the full characterisation of the radial migration process, and we showed that depending on the spatial region considered, one or the other of the two diffusions dominates.
Comment: 15 pages, 17 figures, Accepted for publication to ApJ
Databáze: OpenAIRE