Embedding SLAM algorithms: Has it come of age?

Autor: Mohamed Abouzahir, Samir Bouaziz, Abdelouahed Tajer, Rachid Latif, Abdelhafid Elouardi
Přispěvatelé: Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS), Méthodes et Outils pour les Signaux et Systèmes (SATIE-MOSS), Systèmes d'Information et d'Analyse Multi-Echelles (SIAME), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), Ecole Nationale des Sciences Appliquées [Agadir] (ENSA), Ecole Nationale des Sciences Appliquées d'Agadir
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Robotics and Autonomous Systems
Robotics and Autonomous Systems, Elsevier, 2018, 100, pp.14-26. ⟨10.1016/j.robot.2017.10.019⟩
ISSN: 0921-8890
1872-793X
DOI: 10.1016/j.robot.2017.10.019⟩
Popis: Development of Simultaneous Localization and Mapping (SLAM) systems in the era of autonomous navigation and the growing demand for autonomous robots have put into question how to reduce the computational complexity and make use of SLAM algorithms to operate in real time. Our work, aims to take advantage of low-power embedded architectures to implement SLAM algorithms. Precisely, we evaluate the promise held by the new modern low power architectures in accelerating the execution time of SLAM algorithms. Throughout this, we map and implement 4 well-known SLAM algorithms that find utility in very different robot applications and autonomous navigation, on different architectures based embedded systems. We present first a processing time evaluation of these algorithms on different CPU based architectures. Results demonstrate that FastSLAM2.0 allows a compromise between the computation time and the consistency of the localization results. The algorithm has been modified to be adapted to large environments. It is then optimized for parallel implementations on GPU and FPGA. A comparative study of the resulting implementations is given. Our results show that an embedded FPGA based SoC architecture is an interesting alternative for a SLAM algorithm implementation using the hardware–software co-design approach. Hence, the system meets performance requirements of a robot to operate in real-time constraints.
Databáze: OpenAIRE