Scaling in small-world resistor networks
Autor: | Gyorgy Korniss, Kevin E. Bassler, Balazs Kozma, Derek Abbott, M. B. Hastings, Matthew J. Berryman |
---|---|
Přispěvatelé: | Korniss, G, Hastings, M, Bassler, M, Kozma, B, Berryman, Matthew John, Abbott, Derek |
Rok vydání: | 2006 |
Předmět: |
Physics
Statistical Mechanics (cond-mat.stat-mech) Process (computing) FOS: Physical sciences General Physics and Astronomy Conductance Propagator Disordered Systems and Neural Networks (cond-mat.dis-nn) Condensed Matter - Disordered Systems and Neural Networks Condensed Matter Physics 01 natural sciences Standard deviation 010305 fluids & plasmas law.invention Power (physics) law 0103 physical sciences Small-world model Resistor networks Scaling Limit (mathematics) Statistical physics Resistor 010306 general physics Condensed Matter - Statistical Mechanics |
Zdroj: | Physics Letters A. 350:324-330 |
ISSN: | 0375-9601 |
DOI: | 10.1016/j.physleta.2005.09.081 |
Popis: | We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-\alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $\alpha$. Comment: 15 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |