Scaling in small-world resistor networks

Autor: Gyorgy Korniss, Kevin E. Bassler, Balazs Kozma, Derek Abbott, M. B. Hastings, Matthew J. Berryman
Přispěvatelé: Korniss, G, Hastings, M, Bassler, M, Kozma, B, Berryman, Matthew John, Abbott, Derek
Rok vydání: 2006
Předmět:
Zdroj: Physics Letters A. 350:324-330
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2005.09.081
Popis: We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-\alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $\alpha$.
Comment: 15 pages, 6 figures
Databáze: OpenAIRE