Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries
Autor: | Yunhui Huang, Wuxing Zhang, Min Wan, Rui Zeng, Weilun Chen, Zexiao Cheng, Jingtao Meng, Jiayu Peng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
In situ
Technology Materials science Sodium chemistry.chemical_element Solution synthesis Article Cathode Surfaces Coatings and Films Electronic Optical and Magnetic Materials law.invention chemistry Chemical engineering law Cathode material Vacancy defect Iron hexacyanoferrate Electrode Electrical and Electronic Engineering Vacancy repairing Sodium-ion batteries |
Zdroj: | Nano-Micro Letters, Vol 14, Iss 1, Pp 1-12 (2021) Nano-Micro Letters |
ISSN: | 2150-5551 2311-6706 |
Popis: | Post-synthetic and in-situ vacancy repairing strategies effectively decrease the defects in FeHCF.Vacancy reduction improves the structure and cycling stability of FeHCF.Vacancy reduction boosts the capacity contribution from low-spin Fe in FeHCF. Supplementary Information The online version contains supplementary material available at 10.1007/s40820-021-00742-z. Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries. However, FeHCF always suffers from a poor cycling stability, which is closely related to the abundant vacancy defects in its framework. Herein, post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of high-quality FeHCF in a highly concentrated Na4Fe(CN)6 solution. Both the post-synthetic and in-situ vacancy repaired FeHCF products (FeHCF-P and FeHCF-I) show the significant decrease in the number of vacancy defects and the reinforced structure, which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF. In particular, FeHCF-P delivers a reversible discharge capacity of 131 mAh g−1 at 1 C and remains 109 mAh g−1 after 500 cycles, with a capacity retention of 83%. FeHCF-I can deliver a high discharge capacity of 158.5 mAh g−1 at 1 C. Even at 10 C, the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g−1 and retains 75% after 800 cycles. This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF. Supplementary Information The online version contains supplementary material available at 10.1007/s40820-021-00742-z. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |