Tunneling cracks in arbitrary oriented off-axis lamina
Autor: | Lars Pilgaard Mikkelsen, Christian Frithiof Niordson, Bent F. Sørensen, Simon J. Klitgaard |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Glass fiber Computational Mechanics Energy balance Modulus 02 engineering and technology Orthotropic material 01 natural sciences Mode-mixity 0203 mechanical engineering 0101 mathematics Composite material Laminate Orthotropic materials Stress intensity factor J-integral Strain energy release rate Composite materials Fracture toughness Finite element method 010101 applied mathematics 020303 mechanical engineering & transports Mechanics of Materials Modeling and Simulation Energy (signal processing) Finite element model |
Zdroj: | Mikkelsen, L P, Klitgaard, S J, Niordson, C F & Sørensen, B F 2020, ' Tunneling cracks in arbitrary oriented off-axis lamina ', International Journal of Fracture, vol. 226, pp. 161-179 . https://doi.org/10.1007/s10704-020-00485-9 |
ISSN: | 1573-2673 0376-9429 |
Popis: | The steady-state energy release rate for tunneling cracks under mixed-mode loading is determined using finite element analyses. The balanced and symmetric laminate layup $$[0/\theta /0/-\theta ]_s$$ is investigated, where the tunneling crack is located parallel to the fiber direction of the central off-axis oriented layer. It is found that for the steady-state situation, a simple energy balance calculation of the released energy of the separated crack surfaces for a fully developed crack gives the same value as the average value of a detailed J-integral analysis of the crack front. Furthermore, the crack front mode-mixity, obtained by the same energy balance calculation, was found to give a good prediction of the average mode-mixity found from a detailed stress intensity calculation along the crack-tip. Based on this simplified energy balance approach, the energy release rate is determined for all angles $$\theta \in {]}0;90]^{\circ }$$ for orthotropic elastic properties ranging from typical low modulus glass fiber reinforced polymers to high modulus carbon fiber reinforced polymers. The predicted results can be used to investigate the influence of the layup angles on static and fatigue tunnel crack evolution in composite materials used within, e.g. automotive, aerospace, and wind energy applications. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |