Popis: |
Lytic polysaccharide monooxygenase (LPMO) is known as an oxidatively cleaving enzyme in recalcitrant polysaccharide deconstruction. Herein, we report a novel AA10 LPMO derived from Bacillus subtilis (BsLPMO10A). A substrate specificity study revealed that the enzyme exhibited an extensive active-substrate spectrum, particularly for polysaccharides linked via β-1,4 glycosidic bonds, such as β-(Man1 → 4Man), β-(Glc1 → 4Glc) and β-(Xyl1 → 4Xyl). HPAEC-PAD and MALDI-TOF-MS analyses indicated that BsLPMO10A dominantly liberated native oligosaccharides with a degree of polymerization (DP) of 3-6 and C1-oxidized oligosaccharides ranging from DP3ox to DP6ox from mixed linkage glucans and beechwood xylan. Due to its synergistic action with a variety of glycoside hydrolases, including glucanase IDSGLUC5-38, xylanase TfXYN11-1, cellulase IDSGLUC5-11 and chitinase BtCHI18-1, BsLPMO10A dramatically accelerated glucan, xylan, cellulose and chitin saccharification. After co-reaction for 72 h, the reducing sugars in Icelandic moss lichenan, beechwood xylan, phosphoric acid swollen cellulose and chitin yielded 3176 ± 97, 7436 ± 165, 649 ± 44, and 2604 ± 130 μmol/L, which were 1.47-, 1.56-, 1.44- and 1.25-fold higher than those in the GHs alone groups, respectively (P 0.001). In addition, the synergy of BsLPMO10A and GHs was further validated by the degradation of natural feedstuffs, the co-operation of BsLPMO10A and GHs released 3266 ± 182 and 1725 ± 107 μmol/L of reducing sugars from Oryza sativa L. and Arachis hypogaea L. straws, respectively, which were significantly higher than those produced by GHs alone (P 0.001). Furthermore, BsLPMO10A also accelerated the liberation of reducing sugars from Celluclast® 1.5 L, a commercial cellulase cocktail, on filter paper, A. hypogaea L. and O. sativa L. straws by 49.58 % (P 0.05), 72.19 % (P 0.001) and 54.36 % (P 0.05), respectively. This work has characterized BsLPMO10A with a broad active-substrate scope, providing a promising candidate for lignocellulosic biomass biorefinery. |