Differentiated sympathetic neural control of the kidney

Autor: Linda L. Sawin, S Y Jones, Gerald F. DiBona
Rok vydání: 1996
Předmět:
Zdroj: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 271:R84-R90
ISSN: 1522-1490
0363-6119
DOI: 10.1152/ajpregu.1996.271.1.r84
Popis: Anatomic and neurophysiological methods were used to identify functionally specific subgroups of renal sympathetic nerve fibers. The distribution of diameters of the predominating unmyelinated fibers showed a major mode at 1.1 microns and a minor mode at 1.6 microns. The conduction velocity was 2.10 +/- 0.10 m/s, consistent with unmyelinated C fibers. Analysis of strength-duration relationships during renal nerve stimulation showed that both rheobase and chronaxie values for renal blood flow were greater than those for urinary flow rate and were independent of stimulation frequency. This difference suggests a higher stimulation threshold (smaller diameter) for those renal nerve fibers involved in the renal blood flow response (renal vasoconstriction) compared with those for the urinary flow rate response (antidiuresis) to renal nerve stimulation. Single renal units that responded to preganglionic splanchnic nerve stimulation were studied. Those with spontaneous activity (88%) responded to stimulation of arterial baroreceptors, arterial and central chemoreceptors, and peripheral thermoreceptors, whereas those that lacked spontaneous activity (12%) responded only to stimulation of peripheral thermoreceptors (known to produce renal vasoconstriction). A minority population of single renal units has been identified that, although renal vasoconstrictor, does not exhibit other characteristic features of vasoconstrictor neurons (i.e., responsiveness to stimulation of arterial baroreceptors and arterial and central chemoreceptors). These findings suggest the existence of functionally specific subgroups of renal nerve fibers.
Databáze: OpenAIRE