Multi-objective optimization of the shape of a fixed-bed reactor

Autor: Cyril Pelaingre, Yannick Privat, Alexis Courtais, Abderrazak M. Latifi, François Lesage
Přispěvatelé: Laboratoire Réactions et Génie des Procédés (LRGP), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Ecole Nationale Supérieure des Industries Chimiques (ENSIC), Université de Lorraine (UL), Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), TOkamaks and NUmerical Simulations (TONUS), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Computer Aided and Chemical Engineering
Computer Aided and Chemical Engineering, 2021, ⟨10.1016/B978-0-323-88506-5.50160-1⟩
31st European Symposium on Computer Aided Process Engineering ISBN: 9780323885065
DOI: 10.1016/B978-0-323-88506-5.50160-1⟩
Popis: In the present paper, a multi-objective shape optimization approach based on the adjoint system method has been developed and tested on a two-dimensional fixed-bed reactor. The optimization problem considered involves two performance indices (i.e. conversion rate and dissipated energy in the reactor) and three constraints consisting of an iso-volume constraint and two manufacturing constraints. The process model, solved using OpenFOAM software, is described by the mass balance and Navier-Stokes equations in laminar flow regime. The multi-objective optimization problem is converted into a single-objective problem using weighting factors and then solved several times to determine the set of optimal solutions, i.e. Pareto front. The best optimal solution is then determined by means of the multi-attribute utility theory (MAUT) method. Finally, the resulting optimal shape which reduces the energy dissipation by 46.7% and improves the conversion rate by 2.7% is manufactured using a 3D printing technique.
Databáze: OpenAIRE