Solving the Richardson equations close to the critical points
Autor: | C. Esebbag, Jorge Dukelsky, Fernando Domínguez |
---|---|
Rok vydání: | 2006 |
Předmět: |
[PACS] Integrable systems
Nonlinear Sciences - Exactly Solvable and Integrable Systems Nuclear Theory Coupling strength Condensed Matter - Superconductivity Mathematical analysis [PACS] BCS theory and its development FOS: Physical sciences General Physics and Astronomy Statistical and Nonlinear Physics Mathematical Physics (math-ph) Superconductivity (cond-mat.supr-con) Nuclear Theory (nucl-th) Set (abstract data type) [PACS] Excited states and pairing interactions in model systems Exactly Solvable and Integrable Systems (nlin.SI) Mathematics::Representation Theory Mathematical Physics Mathematics |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname |
ISSN: | 1361-6447 0305-4470 |
DOI: | 10.1088/0305-4470/39/37/002 |
Popis: | 12 pages, 3 tables, 2 figures.--PACS nrs.: 02.30.Ik, 71.10.Li, 74.20.Fg.--Arxiv pre-print available at: http://arxiv.org/abs/math-ph/0609022 We study the Richardson equations close to the critical values of the pairing strength gc, where the occurrence of divergences precludes numerical solutions. We derive a set of equations for determining the critical g values and the noncollapsing pair energies. Studying the behaviour of the solutions close to the critical points, we develop a procedure to solve numerically the Richardson equations for arbitrary coupling strength. This work was supported by Spanish DGI under grant BFM2003-05316-C02-02. |
Databáze: | OpenAIRE |
Externí odkaz: |